Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371900

RESUMO

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are highly prevalent in the human population and produce mild to life-threatening diseases. These viruses interfere with the function and viability of dendritic cells (DCs), which are professional antigen-presenting cells that initiate and regulate the host's antiviral immune responses. Heme oxygenase-1 (HO-1) is an inducible host enzyme with reported antiviral activity against HSVs in epithelial cells and neurons. Here, we sought to assess whether HO-1 modulates the function and viability of DCs upon infection with HSV-1 or HSV-2. We found that the stimulation of HO-1 expression in HSV-inoculated DCs significantly recovered the viability of these cells and hampered viral egress. Furthermore, HSV-infected DCs stimulated to express HO-1 promoted the expression of anti-inflammatory molecules, such as PDL-1 and IL-10, and the activation of virus-specific CD4+ T cells with regulatory (Treg), Th17 and Treg/Th17 phenotypes. Moreover, HSV-infected DCs stimulated to express HO-1 and then transferred into mice, promoted the activation of virus-specific T cells and improved the outcome of HSV-1 skin infection. These findings suggest that stimulation of HO-1 expression in DCs limits the deleterious effects of HSVs over these cells and induces a favorable virus-specific immune response in the skin against HSV-1.

2.
Biotechnol Rep (Amst) ; 38: e00798, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181274

RESUMO

Herpes simplex virus type 2 (HSV-2) is a human infectious agent with significant impact on public health due to its high prevalence in the population and its ability to elicit a wide range of diseases, from mild to severe. Although several antiviral drugs, such as acyclovir, are currently available to treat HSV-2-related clinical manifestations, their effectiveness is poor. Therefore, the identification and development of new antiviral drugs against HSV-2 is necessary. Seaweeds are attractive candidates for such purposes because they are a vast source of natural products due to their highly diverse compounds, many with demonstrated biological activity. In this study, we evaluated the in vitro antiviral potential of red algae extracts obtained from Agarophyton chilense, Mazzaella laminarioides, Porphyridium cruentum, and Porphyridium purpureum against HSV-2. The phycocolloids agar and carrageenan obtained from the macroalgae dry biomass of A. chilense and M. laminarioides and the exopolysaccharides from P. cruentum and P. purpureum were evaluated. The cytotoxicity of these extracts and the surpluses obtained in the extraction process of the agar and carrageenans were evaluated in human epithelial cells (HeLa cells) in addition to their antiviral activity against HSV-2, which were used to calculate selectivity indexes (SIs). Several compounds displayed antiviral activity against HSV-2, but carrageenans were not considered as a potential antiviral therapeutic agent when compared to the other algae extracts with a SI of 23.3. Future assays in vivo models for HSV-2 infection should reveal the therapeutic potential of these algae compounds as new antivirals against this virus.

3.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806291

RESUMO

Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.


Assuntos
Endossomos/metabolismo , Herpesviridae/metabolismo , Autofagia , Humanos
5.
Virulence ; 11(1): 1482-1500, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135539

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.


Assuntos
Fator 1 Induzível por Hipóxia/genética , Hipóxia , Viroses/imunologia , Viroses/terapia , Hipóxia Celular/fisiologia , Regulação da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Viroses/fisiopatologia
6.
Front Microbiol ; 11: 2006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013743

RESUMO

Herpes simplex viruses (HSVs) type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population, and the infections they produce are lifelong with frequent reactivations throughout life. Both viruses produce uncomfortable and sometimes painful lesions in the orofacial and genital areas, as well as herpetic gingivostomatitis, among other clinical manifestations. At present, the most common treatments against HSVs consist of nucleoside analogs that target the viral polymerases. However, such drugs are poorly effective for treating skin lesions, as they only reduce in 1-2 days the duration of the herpetic lesions. Additionally, viral isolates resistant to these drugs can emerge in immunosuppressed individuals, and second-line drugs for such variants are frequently accompanied by adverse effects requiring medical supervision. Thus, novel or improved therapeutic drugs for treating HSV lesions are needed. Here, we assessed the potential antiviral activity of aqueous extracts obtained from two brown macroalgae, namely Macrocystis pyrifera and Durvillaea antarctica against HSVs. Both extracts showed antiviral activity against acyclovir-sensitive and acyclovir-resistant HSV-1 and HSV-2. Our analyses show that there is a significant antiviral activity associated with proteins in the extract, although other compounds also seem to contribute to inhibiting the replication cycle of these viruses. Evaluation of the algae extracts as topical formulations in an animal model of HSV-1 skin infection significantly reduced the severity of the disease more than acyclovir, as well as the duration of the herpetic lesions, when compared to mock-treated animals, with the D. antarctica extract performing best. Taken together, these findings suggest that these algae extracts may be potential phytotherapeutics against HSVs and may be useful for the treatment and reduction of common herpetic manifestations in humans.

7.
Antiviral Res ; 179: 104818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423887

RESUMO

Infections with herpes simplex viruses are lifelong and highly prevalent worldwide. Individuals with clinical symptoms elicited by HSVs may suffer from occasional or recurrent herpetic lesions in the orofacial and genital areas. Despite the existence of nucleoside analogues that interfere with HSV replication, such as acyclovir, these drugs are somewhat ineffective in treating skin lesions as topical formulations only reduce in one or few days the duration of the herpetic ulcers. Cetylpyridinium chloride (CPC) is a quaternary ammonium compound present in numerous hygiene products, such as mouthwashes, deodorants, aphtae-treating formulations and oral tablets as an anti-septic to limit bacterial growth. Some reports indicate that CPC can also modulate host signaling pathways, namely NF-κB signaling. Because HSV infection is modulated by NF-κB, we sought to assess whether CPC has antiviral effects against HSVs. Using wild-type HSV-1 and HSV-2, as well as viruses that are acyclovir-resistant or encode GFP reporter genes, we assessed the antiviral capacity of CPC in epithelial cells and human gingival fibroblasts expanded from the oral cavity and its mechanism of action. We found that a short, 10-min exposure to CPC added after HSV entry into the cells, significantly limited viral replication in both cell types by impairing viral gene expression. Interestingly, our results suggest that CPC blocks HSV replication by interfering with the translocation of NF-κB into the nucleus of HSV-infected cells. Taken together, these findings suggest that formulations containing CPC may help limit HSV replication in infected tissues and consequently reduce viral shedding.


Assuntos
Antivirais/farmacologia , Cetilpiridínio/farmacologia , Fibroblastos/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fibroblastos/virologia , Expressão Gênica , Gengiva/citologia , Gengiva/virologia , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simplexvirus/fisiologia , Células Vero
8.
Front Microbiol ; 11: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117158

RESUMO

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31114761

RESUMO

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans for thousands of years and are present at a high prevalence in the population worldwide. HSV infections are responsible for several illnesses including skin and mucosal lesions, blindness and even life-threatening encephalitis in both, immunocompetent and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs represent significant public health burdens. Similar to other herpesviruses, HSV-1 and HSV-2 produce lifelong infections in the host by establishing latency in neurons and sporadically reactivating from these cells, eliciting recurrences that are accompanied by viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to persist and recur in otherwise healthy individuals is likely given by the numerous virulence factors that these viruses have evolved to evade host antiviral responses. Here, we review and discuss molecular mechanisms used by HSVs to evade early innate antiviral responses, which are the first lines of defense against these viruses. A comprehensive understanding of how HSVs evade host early antiviral responses could contribute to the development of novel therapies and vaccines to counteract these viruses.


Assuntos
Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Humanos
10.
Front Microbiol ; 9: 2406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386309

RESUMO

Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...